最新GRE考试数学知识排列组合篇

 来源:互联网    要点:GRE考试  
编辑点评: GRE数学考试中涉及到许多基础的知识,包括数量、几何图形、排列组合等,本文主要根据排列组合部分的知识,为大家做一个罗列和汇总,供大家参考和学习。

以下的排列组合的知识点,是GRE数学考试中经常会考察的内容,这些知识点都是最为基础的,大家需要把这些知识点弄明白后,才能运用到考题当中。

下面就给大家介绍一下最新GRE考试数学知识和一些例题的解答过程。

1.排列(permutation):

从N个东东(有区别)中不重复(即取完后不再取)取出M个并作排列,共有几种方法:P(M,N)=N!/(N-M)!

例如:从1-5中取出3个数不重复,问能组成几个三位数?

解答:P(3,5)=5!/(5-3)!=5!/2!=5*4*3*2*1/(2*1)=5*4*3=60

也可以这样想从五个数中取出三个放三个固定位置

那么第一个位置可以放五个数中任一一个,所以有5种可能选法,那么第二个位置余下四个数中任一个,....4.....,那么第三个位置……3……

所以总共的排列为5*4*3=60

同理可知如果可以重复选(即取完后可再取),总共的排列是5*5*5=125

2.组合(combination):

从N个东东(可以无区别)中不重复(即取完后不再取)取出M个(不作排列,即不管取得次序先后),共有几种方法

C(M,N)=P(M,N)/P(M,M)=N!/(M-N)!/M!

C(3,5)=P(3,5)/P(3,3)=5!/2!/3!=5*4*3/(1*2*3)=10

可以这样理解:组合与排列的区别就在于取出的M个作不作排列-即M的全排列P(M,M)=M!,

那末他们之间关系就有先做组合再作M的全排列就得到了排列

所以C(M,N)*P(M,M)=P(M,N),由此可得组合公式

性质:C(M,N)=C( (N-M), N )

即C(3,5)=C( (5-2), 5 )=C(2,5) = 5!/3!/2!=10

3.概率

概率的定义:P=满足某个条件的所有可能情况数量/所有可能情况数量

概率的性质 :0<=P<=1

1)不相容事件的概率:

a,b为两两不相容的事件(即发生了a,就不会发生b)

P(a或b)=P(a)+P(b)

P(a且b)=P(a)+P(b)=0 (A,B不能同时发生)

2)对立事件的概率:

对立事件就是a+b就是全部情况,所以不是发生a,就是b发生,但是,有一点a,b不能同时发生.例如:

a:一件事不发生

b:一件事发生,则A,B是对立事件

显然:P(一件事发生的概率或一件事不发生的概率)=1(必然事件的概率为1)

则一件事发生的概率=1 - 一件事不发生的概率...........公式1

理解抽象的概率最好用集合的概念来讲,否则结合具体体好理解写

a,b不是不相容事件(也就是说a,b有公共部分)分别用集合A和集合B来表示

即集合A与集合B有交集,表示为A*B (a发生且b发生)

集合A与集合B的并集,表示为A U B (a发生或b发生)

则:P(A U B)= P(A)+P(B)-P(A*B).................公式2

3)条件概率:

考虑的是事件A已发生的条件下事件B发生的概率

定义:设A,B是两个事件,且P(A)>0,称

P(B|A)=P(A*B)/P(A)....................公式3

为事件A已发生的条件下事件B发生的概率

理解:就是P(A与B的交集)/P(A集合)

理解: “事件A已发生的条件下事件B发生的概率”,很明显,说这句话的时候,A,B都发生了,求的是A,B同时发生的情况占A发生时的比例,就是A与B同时发生与A发生的概率比。

4)独立事件与概率

两个事件独立也就是说,A,B的发生与否互不影响,A是A,B是B,用公式表示就是P(A|B)=P(A)所以说两个事件同时发生的概率就是:

P(A U B)=P(A)×P(B)................公式4

最新2022GRE考试信息由沪江留学网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: