The correct answer is B
Explanation
The number of positive integer multiples of 3 that are less than or equal to 100 is 99÷3=33. The number of positive integer multiples of 5 that are less than or equal to 100 is 100÷5=20. The multiples of both 3 and 5 are the multiples of 3×5=15, and there are 90÷15=6 positive integers less than 100 that are multiples of 15. The multiples of both 3 and 5 are counted twice when counts of the multiples of 3 and the multiples of 5 are added together, so the number of positive integers less than or equal to 100 that are multiples of 3 or multiples of 5 or multiples of both 3 and 5 is 33+20-6=47.
>>点击查看SAT每日一问专题,阅读更多相关文章!
-
美国高考作文题目汇总:SAT写作历年题目
美国“高考(SAT)”的写作或作文题目是什么样的呢?小编整理了2012到2015年美国高考的作文题目也就是SAT写作历年题目让大家练练手。
- 【真题解析】详解新SAT语法考试中易混淆词汇题答题技巧
- SAT I 一日一问:2015年3月5日
- SAT I 一日一问:2015年3月4日
- SAT I 一日一问:2015年3月3日